
Software by Numbers

4 CROSSTALK The Journal of Defense Software Engineering March 2002

For the past 30 years, I have been play-
ing the numbers game. I have been

developing benchmarks to confirm that
the estimates I was developing were rea-
sonable and achievable. To win the game,
I have had to present the numbers in such
a way that people I deal with would use
them, not abuse them.

Everyone who works in the software
business seems to be looking for num-
bers of one kind or another. I get at least
one call a day asking me questions like,
“What’s the productivity that you’ve seen
across the United States for software
within the telecommunications domain?”
or “What’s the average cost/source line
of code for a military system?”

My initial reaction is to try to avoid
answering these questions. Why? Because
I am afraid that whatever I say will be
misquoted. Worse, I am afraid that the
numbers I supply will be misused. When
pressed for an answer, I express the num-

ber as a range. I qualify my answer by say-
ing: “ The average cost/line for a military
system used for command and control
varies between one and three hours per
source line where an hour is expressed as
directly chargeable labor, and a source
line of code is defined using the Software
Engineering Institute’s counting frame-
work as a logical line. Furthermore, the
effort associated with this estimate is
scoped to include requirements analysis,
architectural design, development, and
software integration and test tasks. It

does not include system or beta testing,
but does include support for require-
ments analysis.”

Sounds like a bunch of double-talk
doesn’t it? Well, it isn’t. Nine out of 10
times, no matter what I say, the number is
still misquoted or used out of context.

Needless to say, I am getting tired of
being misquoted. In response, I have
decided to write this article to put some
of the more important numbers that I
use in the public domain. Why? Well, for
two reasons. First, I believe the commu-
nity could use these numbers as bench-
marks. They could serve as industry
application domain norms against which
organizations could compare their results
to determine how well (or not so well)
they are doing. Second, I want to get the
community thinking about discussing and
sharing “like” numbers. That is where I
believe the real benefits lie.

Think about it. When push comes to
shove, what really matters to manage-
ment are the numbers. Again, let me give
you an example. Suppose you are trying
to get your bosses to invest in a new soft-
ware-engineering environment. They will
want justification. Typically, their decision
whether or not to fund your proposal will
revolve around whether money is avail-
able and the answers to the following
questions: Will this investment save us
money? If so, how much? What are the
tax implications? Can we depreciate the
equipment and software? If so, can we
use either declining balance or straight-
line depreciation schedules? What is the
projected payback period and return on
investment? Is this return higher than
those who propose other alternative uses
for the money?

Unfortunately, most of the engineers
I have worked with during the years
haven’t the foggiest notion how to
answer these questions. The net result is
that their proposals are more often reject-
ed than accepted because they fail to pre-
pare a winning business case. However,
the same engineers could improve their
prospects of winning by using numbers
to justify their proposals in terms of pro-
ductivity improvement, cost reduc-
tion/avoidance, quality improvement,
and/or time-to-market reduction strate-
gies [1]. They could make the numbers
sing to management.

Making Sense of the Data
My firm has been collecting cost, produc-
tivity, and quality data for more than two
decades. These data are provided by
organizations in exchange for bench-
marks that they use for the following
major purposes:
• Determine how the organization is

doing relative to industry averages
within an application domain
(automation, command and control,
telecommunications, etc.).

• Check the reasonableness of compet-
itive bids.

Let the Numbers Do the Talking

Donald J. Reifer
Reifer Consultants, Inc.

This article provides software cost and productivity benchmarks for 12 application domains that readers can use to determine
how well their organization is doing relative to industry averages, and whether their software estimates are reasonable. In addi-
tion to addressing common questions raised relative to the benchmarks, this article summarizes the relative improvement that
firms within the applicable industries are experiencing, which range from 8 percent to 12 percent annually.

“I have used the
numbers to win the
schedule and budget

battles, to acquire
investment dollars, ... and
most importantly to win
management’s trust.”

Acronym List for Tables
IOC Initial Operational Capability
IPT Integrated Product Team
IRR Internal Requirements

Review
KSLOC Thousands Source Lines of

Code
LCA Life Cycle Architecture

(review)
LCO Life Cycle Objectives

(review)
MBASE Model-Based Software

Engineering
PDR Preliminary Design Review
PRR Product Readiness Review
SAR Software Acceptance Review
SDR System Design Review
SETD Systems Engineering and

Technical Direction
SLOC Source Lines of Code
SM Staff Month
SRR Software Requirements

Review
STR Software Test Review
UTC Unit Test Review

• Assess organizational shortfalls rela-
tive to the competition.
Occasionally, we publish snapshots of

these databases [2]. When we do, we get
lots of questions and feedback because
interest is high, and the need for the num-
bers is great. To ensure the validity of the
data submitted to us, we first screen and
then normalize it using definitions that
we have developed for that purpose.
Once the numbers are entered into our
databases, the data are checked for out-
liers and tested for homogeneity.
Standard statistical regression techniques
are then used to analyze the data and test
it for sampling and other types of statis-
tical errors.

The database has evolved to include
data from approximately 1,500 projects.
To maintain currency, none of the data
retained in the database is more than 10
years old. We continuously refresh the
database to purge older projects from it
because they tend to bias the results of
our analyses. We also remove outliers
from the database because they tend to
bias the results.

Over the years, my firm’s databases
have been the source of data for major
software cost and productivity studies.
For example, the U.S. Air Force relied
heavily on the databases to develop a
business case for its move to using Ada
[3]. In addition, other organizations have
used information from these databases to
prepare knowledge bases and to calibrate
their software cost models. Independent
of the points Dr. Randall Jensen raised in
his recent CrossTalk article [4] on the
topic of model calibration, we still believe
and have the data to demonstrate that a
calibrated cost model outperforms one
that has not been calibrated. In addition,
cost models seem much more accurate
than activity-based costing done using
Delphi approaches for large projects [5].
While critics of software cost models
seem to abound [6], none of those
throwing stones at the models have pro-
posed alternative means that have higher
prospects of accuracy.

First Look at Software
Productivity
Software productivity refers to the ability
of an organization to generate outputs
(software systems, documentation, etc.)
using the inputs or resources it has at its
disposal (people, money, equipment,
tools, etc.). Using this definition, an
organization can increase its productivity
by either focusing on the input or output
part of the equation.

An input-based strategy would accen-
tuate increasing workforce productivity
via efficiencies gained by inserting better
methods, tools, processes, facilities, and
equipment and collaboration facilities. In
contrast, an output-based strategy would
place emphasis on reducing the amount
of output required by using component
technology, product lines, and architec-
ture-centric reuse to eliminate a part of
the work involved in developing the
product.

Within many industries, productivity
is commonly expressed as either source
lines of code (SLOC)/staff month (SM)
or function points (FP)/SM. Of course,
the measures SLOC, FP, and SM must be
carefully scoped and defined for these
metrics to convey consistent meaning. In
addition, there are many factors or cost
drivers that cause each of these metrics
to vary widely. These must be normalized
when defining the terms. Because the
Reifer Consultants, Inc. databases are pri-

marily SLOC-based, we use this metric as
the basis for our analysis. For those inter-
ested, we backfire the supplied FP data in
our database using language conversion
factors supplied by the International
Function Point Users Group (IFPUG) to
convert from FP to SLOC (e.g., one FP is
expressed as so many lines of C++ or
Java).

Table 1 summarizes the results of
our analyses for 12 application domains
for which we have collected data that we
feel are of interest to the CrossTalk

community. The numbers in Table 1
were derived by taking a 500-project
subset of our database and performing
statistical analysis using various statisti-
cal tools. In addition, there are no for-
eign projects in the database to distort
conclusions. Because our clients often
challenge our numbers, we pay a great
deal of attention to the tendencies and
purity of our database. We cannot afford
not to do this.

March 2002 www.stsc.hill.af.mil 5

Let the Numbers Do the Talking

Application
Domain

Number
Projects

Size Range
(KSLOC)

Avg. Productivity
(SLOC/SM)

Range
(SLOC/SM)

Example
Applications

Automation 55 25 to 650 245 120 to 440 Factory automation
Command & Control 43 35 to 4,500 225 95 to 330 Command centers
Data Processing 36 20 to 780 330 165 to 500 Business systems
Environment/Tools 75 15 to 1,200 260 143 to 610 CASE tools, compilers, etc.
Military-Airborne 38 20 to 1,350 105 65 to 250 Embedded sensors
Military-Ground 52 25 to 2,125 195 80 to 300 Combat information center
Military-Missile 14 22 to 125 85 52 to 165 Guidance, navigation and

control systems
Military-Spaceborne 18 15 to 465 90 45 to 175 Attitude control systems
Scientific 33 28 to 790 195 130 to 360 Seismic processing systems
Telecommunications 48 15 to 1,800 250 175 to 440 Digital switches and PABX
Trainers/Simulations 24 200 to 900 224 143 to 780 Virtual reality simulators
Web 64 10 to 270 275 190 to 975 Client/server sites

500 10 to 4,500 45 to 975

Table 1: Software Productivity (SLOC/SM) by Application Domains

Table 1 Notes
• The 500 projects taken from our database of more than 1,500 projects were com-

pleted within the last seven years by any of 38 organizations. (Each organizations’
identity is anonymous due to the confidentiality of the data.)

• The scope of all projects starts from software requirements analysis and finishes
with completion of software testing.
• For military systems, the scope extends from software requirements review

until handoff to the system test bench.
• For Web systems, the scope extends from product conception to customer

sell-off.
• This includes all directly chargeable engineering and management labor involved.

• It includes programming, task management, and normal support personnel.
• It does not include quality assurance, system or operational test, and beta test

personnel.
• The average number of hours/staff month assumed was 152.
• SLOC is defined by Florac and Carleton [7] to be a logical source line of code

using the conventions published by the Software Engineering Institute in 1993.
• Function point sizes were converted to SLOC using backfiring factors published

by the International Function Point Users Group (IFPUG) in 2000, as available
on their Web site.

• Different life-cycle models and methodologies are assumed. For example, Web
projects typically followed a Rapid Application Development process and used
lightweight methods, while military projects used more classical processes and
methods.

• Different languages were used. For example, Web projects employed Java and
Visual C while military projects used Ada and C/C++.

What About Software Cost
Numbers?
While cost and productivity of software
are related, they are separate considera-
tions when dealing with numbers. To illus-
trate this point, I have seen several organ-
izations increase their productivity and
costs at the same time. In these cases, the
organizations were very productive at gen-
erating software to the wrong require-
ments, or building and releasing products
with lots of latent defects. That is why we

focus attention on each set of numbers
separately.

When analyzing our database, we find
that software cost tends to be related to
both the labor rates and language level
(i.e., refers to the methods, tools, and lan-
guage technology used by the project). To
develop numbers of interest, we use
$12,000 as the standard cost for a SM of
effort exclusive of profit and general and
administrative charges, as applicable. Table
2 shows the dollar cost per SLOC by

application domains that we have devel-
oped as benchmarks.

How Is the Effort Distributed?
As most of us have learned, distribution
of effort and schedule is a function of the
life-cycle paradigm (i.e., a modeling
method for the software process) selected
for the project. In addition, as Fred
Brooks [8] so nicely has explained, in
many cases, effort and schedule cannot be
interchanged. For the following three pop-
ular life-cycle paradigms, the allocations of
effort and schedule are shown in the
Tables 3, 4, and 5:
• Waterfall [9].
• Rational Unified Process (RUP) [10].
• Model-Based Software Engineering

(MBASE) [11].
Formats in the tables vary because the

numbers are based on slightly modified
public references. In some cases, the allo-
cations of effort (and schedule) are shown
as ranges. In other cases, they are normal-
ized so that they sum to 100 percent. In
yet other cases, the sums are not normal-
ized and therefore equal more than 100
percent.

Tables 3 and 5 clearly show the effort
and duration to perform a particular activ-
ity relative to what is required for what
they consider normal software develop-
ment (e.g., excludes preparing software
requirements and system test tasks). Table
4 reflects the effort and duration to per-
form tasks that are part of the RUP. Do
not infer that MBASE takes 18 percent
longer than RUP using these Tables. That
is not the case because different life cycles
embody different activities that make
comparisons between them difficult and
misleading. In any case, the results are
what is important, not its format. If you
are interested in more detailed compar-
isons between life cycles, see the appen-
dices in [11], which provide the most com-
plete coverage I have seen.

These allocation tables are very reveal-
ing. They tell us that software people do
much more work than what is considered
by most to be software development. This
workload typically starts with analyzing
the software requirements (i.e., these are
typically developed by some other group
like marketing or systems engineering) and
ends with software integration and test.
From Table 3, we can see that software
people also take part in developing the
requirements, which takes on average 7
percent additional effort and 16 percent to
24 percent more time, and they support
system testing, which takes 12 percent
more effort and 12.5 percent more time.
This makes software cost estimates low by

Software by Numbers

6 CROSSTALK The Journal of Defense Software Engineering March 2002

Application Domain Ada83 Ada95 C/C++ 3GL Norm Notes

Automation * * 30 45 30 Most implement ladder nets
Command & Control 70 * 50 100 75

Data Processing 25 25 20 30 30
Most have moved to using Java and
visual languages

Environment/Tools 25 * 25 30 25
Military-Airborne 150 125 125 225 175
Military-Ground 75 75 50 90 75
Military-Missile 150 * * 250 200
Military-Spaceborne 150 * 150 200 175
Scientific 75 * 65 85 75
Telecommunications 50 35 40 80 55 Most use C/C++ and Unix
Trainers/Simulations 50 * 35 75 50
Web Most use Java and visual languages

* * * * *
* Not enough data

Table 2: Software Cost ($/SLOC) by Language by Application Domain

Phase (end points) Effort % Duration %

Inception (IRR to LCO) 6 (2 to 15) 12.5 (2 to 30)

Elaboration (LCO to LCA) 24 (20 to 28) 37.5 (33 to 42)

Construction (LCA to IOC) 76 (72 to 80) 62.5 (58 to 67)

Transition (IOC to PRR) 12 (0 to 20) 12.5 (0 to 20)

Total 118 125

Note: Percentage allocations of effort and duration are shown as ranges and are not normalized per the reference [11].

Table 5: MBASE Paradigm Effort and Schedule Allocations

Table 2 Notes
• Dollars used to determine cost are assumed to be constant year 2000 dollars.
• The cost assumed per staff month of $12,000 assumes a labor mix and includes

direct labor costs plus allowable overhead. This mix assumed that the average staff
experience across the team in the domain was three years based on the average
staff experience with the application and languages, methods, and tools employed
to engineer it.

• Many languages were used in these applications; most projects used more than
one language. For example, C/C++ was used heavily in the telecommunication
domain, while Java was used extensively for Web applications.

• In addition, to keep costs down many organizations are trying to exploit com-
mercial off-the-shelf packages and large legacy software systems written in lan-
guages like COBOL, FORTRAN, Jovial, and PL/1.

Phase (end points) Effort % Duration %

Inception (IRR to LCO) 5 10

Elaboration (LCO to LCA) 20 30

Construction (LCA to IOC) 65 50

Transition (IOC to PRR) 10 10

Total 100 100

Note: Percentage allocations of effort and duration are normalized to 100 percent per the reference [10].

Table 4: Rational Unified Process (RUP) Effort and Schedule Allocations

Phase (end points) Effort % Duration %

Plans and Requirements (SDR to SRR) 7 (2 to 15) 16 to 24 (2 to 30)

Product Design (SRR to PDR) 17 24 to 28

Software Development (PDR to UTC) 52 to 64 40 to 56

Software Integration and Test (UTC to STR) 19 to 31 20 to 32

Transition (STR to SAR) 12 (0 to 30) 12.5 (0 to 20)

Note: Percentage allocations for effort and duration are shown as ranges.

Total 107 to 131 116 to 155

Table 3: Waterfall Paradigm Effort and Schedule Allocations

Let the Numbers Do the Talking

March 2002 www.stsc.hill.af.mil 7

at least 19 percent and schedule estimates
short by about 28.5 percent. It is no won-
der that software people feel shorted
when the budgets are allocated.

What About the Other
Support Costs?
Let us look at the typical costs software
organizations spend supporting other
engineering organizations. For example,
they might participate as members of
some integrated product team tasked with
developing requirements for the project.
Because this effort takes time and effort,
funds to perform the work involved need
to be estimated, budgeted, and controlled.

As another example, software people
will be called upon to assist during sys-
tems test and evaluation. They might be
called upon to either conduct software
beta testing or fix software, hardware, or
systems problems during bench, system,
and/or operational testing. That is where
software shines. It is used to make the sys-
tem work.

What is important is that these activi-
ties consume effort and take talent away
from the mainline software development
tasks. That means all of these activities
need to be thoroughly planned, estimated,
budgeted, scheduled, staffed, directed,
controlled, and managed by the software
manager as the project unfolds.

There is a lot of controversy over how
much effort is needed to perform differ-
ent types of support tasks. Based on
experience [12], Table 6 shows examples
of how much effort is expended in pro-
viding needed support expressed as an
average and a range.

Because Independent Verification and
Validation and System Engineering
Technical Direction contractors increase
the development contractor’s workload in
military contracts, they require additional
effort to support such relationships. This
is especially true when military organiza-
tions use a federally funded research and
development contractor to perform sys-
tem integration and task-direction type
tasks.

Have We Made Progress?
It is also interesting to look at the trends
associated with productivity and cost.
Based on the data we analyzed, the nom-
inal improvement firms experience
across industries is from 8 percent to 12
percent a year. Those who invest more,
typically gain more. For example, jump-
ing a single CMM level can reduce soft-

ware development costs from 4 percent
to 11 percent based on a recent Ph.D.
dissertation done by Brad Clark at the
University of California [14].

Because I plan to write a separate
article on this topic in the near future, I
will not clutter this article with addition-
al trend data. However, it is important.
For example, a 10 percent improvement
in productivity can be used to justify a
multi-million dollar software initiative
for firms with 500 or more software
engineers.

Call to Action
I encourage those of you with solid num-
bers to throw stones. One of my goals in
writing this paper is getting the communi-
ty to think about, discuss, and share like
numbers. If you have more concrete num-
bers, I encourage you to put them into the
public domain. Challenge my assumptions
and summarize your experience so the
community can use it. However, if you do,
please tell the community how you derived
the numbers, what their source is, and how
you normalized them. Do not just throw

® Capability Maturity Model and CMM are registered in the
U.S. Patent and Trademark Office.

Support Cost Category
Effort (% of software
development costs)

Notes

Requirements synthesis and IPT
participation

10 (6 to 18)
Participation in systems definition and specification
activities.

Systems integration and test 30 (0 to 100)
Supporting problem resolution activities as the system
is integrated and tested.

Repackaging documentation per
customer requirements

10 (0 to 20)
Repackaging documentation to meet some customer
preference instead of that dictated by the approved
organizational process.

Formal configuration management
(CM)

5 (4 to 6)
Support to system level CM activities (version control &
support for the Software Change Control Board are
already included in the software estimate).

Independent software quality
assurance (SQA)

5 (4 to 6) SQA when done by a separate organization.

Independent Verification &
Validation or SETD support contractor

6 (4 to 10)
Development organization support to an independent
contractor hired to perform technical oversight and
provide direction.

Total 66 (18 to 160)

Table 6: Typical Software Support Costs

Table 6 Notes
• Percentage allocations of effort are shown as both an average and a range in

parentheses.
• Version control of software deliverables is included in our other numbers as is

normal quality assurance activities. The additional effort illustrated by Table 6
refers to formal activities like project-level change-control boards that organiza-
tions must support.

• If there are subcontracts involving software, additional effort must be added to
Table 6 to provide for software support in this area.

• If large amounts of commercial off-the-shelf software will be used, additional
effort must be added to Table 6 to support the evaluation, glue code develop-
ment, integration, and other life-cycle tasks that the software organization will
have to support.

• Percentage expressed uses software development costs as its basis. For example,
the chart states that the cost on average quoted for a software job should be 166
percent of the base (the base plus 66 percent) to cover the additional costs asso-
ciated with the support identified in Table 6 when all the categories listed are
applicable.

• These support costs can vary greatly based on the manner in which the firm is
organized and the work allocated. For example, some firms combine their CM
and SQA support in a single Product Assurance organization. In such cases, the
average cost for both is 7 percent (6 percent to 8 percent) because they take
advantage of economies of scale.

• System integration and test support do not include operational test and evalua-
tion for military projects and beta testing for commercial projects. These can
require even more support be applied than that identified. For example, we have
seen aircraft projects that have gone through extensive flight testing burn thou-
sands of hours of software support during two- and three-year time periods. As
another example, we have seen commercial projects also burn thousands of
hours supporting beta testing at remote user sites.

• Many firms have adopted defined processes at the organizational level and are
rated as a Level 3 using the Software Engineering Institute’s Software Capability
Maturity Model® (SW-CMM®) [13]. When this is true, these firms generate doc-
umentation as a normal part of their engineering processes. If the customer
wishes to reformat this documentation, there will be a repackaging cost because
this is not the normal way these firms conduct their business.

stones at my results. That would be count-
er productive. Share your experience with
others and help the community to develop
realistic benchmarks that they can use for
comparison purposes.

I really would encourage those who do
not have numbers to develop them.
Throughout my entire career, I have used
the numbers to win the schedule and
budget battles, to acquire investment dol-
lars, to improve my decision-making abili-
ties, and most importantly to win manage-
ment’s trust. I gained credibility with man-
agement at all levels of the enterprise by
discussing both the technical and business
issues associated with my proposals. I was
successful in getting approvals because I
emphasized business goals and showed
management that what I was proposing
made good business and technical sense. It
is not surprising that I am a strong advo-
cate of managing by the numbers. Try it,
and I think you will like it.◆

References
1. Reifer, D. J. Making the Software

Business Case: Improvement by the
Numbers. Addison-Wesley, 2001.

2. Reifer, D. J., J. Craver, M. Ellis, and D.
Strickland, eds. “Is Ada Dead or Alive
Within the Weapons System World?”
CrossTalk Dec. 2000: 22-24.

3. Ada and C++: A Business Case
Analysis. U. S. Air Force, 1991.

4. Jensen, R. “Software Estimating Model
Calibration.” CrossTalk July 2001:
13-18.

5. Reifer, D. J. “Comparative Accuracy
Analysis of Cost Models to Activity-
Based Costing for Large Scale Software
Projects.” Reifer Consultants, Inc.,
1996.

6. Ferens, E., and D. Christensen, eds.
Calibrating Software Cost Models to
Department of Defense Databases – A
Review of Ten Studies. Air Force
Research Laboratories, Feb. 1998.

7. Florac, W. A., and A. D. Carleton, eds.
Measuring the Software Process.
Addison-Wesley, 1999.

8. Brooks, F. The Mythical Man-Month,
Anniversary Edition. Addison Wesley,
1995.

9. Boehm, B. W., C. Abts, A. W. Brown, S.
Chulani, B. K. Clark, E. Horowitz, R.
Madachy, D. Reifer, and B. Steece, eds.
Software Cost Estimation with COCO-
MO II. Prentice-Hall, 2000.

10. Kruchten, P. The Rational Unified
Process. Addison-Wesley, 1998.

11. Royce, W. Software Project Manage-
ment: A Unified Framework. Addison-
Wesley, 1998.

12. Reifer, D. J. A Poor Man’s Guide to
Estimating Software Costs. 8th ed.,
Reifer Consultants, Inc., 2000.

13. Paulk, M. C., C. V. Weber, B. Curtis, and
M. B. Chrissis, eds. The Capability
Maturity Model: Guidelines for
Improving the Software Process.
Addison-Wesley, 1995.

14. Clark, B. “Quantifying the Effects on
Effort of Process Improvement.”
IEEE Software Nov./Dec. 2000: 65-70.

About the Author
Donald J. Reifer is one
of the leading figures in
the fields of software
engineering and man-
agement, with more
than 30 years of pro-

gressive experience in government and
industry. In that time, he has served as
chief of the Ada Joint Program Office
and the director of the Department of
Defense Software Reuse Initiative. He
is currently the president of Reifer
Consultants, Inc., which specializes in
helping clients improve the way they do
business. Reifer’s many honors include
the American Institute of Aeronautics
and Astronautics Software Engineering
Award, the Secretary of Defense’s
Medal for Outstanding Public Service,
the NASA Distinguished Service
Medal, the Frieman Award, and the
Hughes Aircraft Fellowship. Reifer has
more than 100 publications, including
Software Management Tutorial (6th edi-
tion) and Making the Software Business
Case: Improvement by the Numbers.

P.O. Box 4046
Torrance, CA 90505
Phone: (310) 530-4493
Fax: (310) 530-4297
E-mail: d.reifer@ieee.org

Software by Numbers

8 CROSSTALK The Journal of Defense Software Engineering March 2002

WEB SITES

Earned Value Management
www.acq.osd.mil/pm
Sponsored by the Office of the Under Secretary of Defense
(Acquisition, Technology, and Logistics) Acquisition Resources
and Analysis/Acquisition Management, the Earned Value
Management Web site provides information on earned value
project management (EVM) for government, industry, and
academic users. Find current editions of policy documents,
information on government EVM contacts and International
Performance Management Council members, speeches, train-
ing material, EVM software, supplier links, frequently asked
questions, and more.

Project Management Institute
www.pmi.org
The Project Management Institute (PMI) claims to be the
world’s leading not-for-profit project management professional
association, with more than 86,000 members worldwide. PMI
establishes project management standards, provides seminars,
educational programs, and professional certification for project
leaders.

Defense Contract Management Agency
www.dcma.mil
The Defense Contract Management Agency is the
Department of Defense contract manager, responsible for
ensuring federal acquisition programs, supplies, and services
are delivered on time, within cost, and meet performance
requirements. The agency is currently conducting in-plant
observations using the Capability Maturity Model® to deploy
a standard methodology via continuous process evaluations of
contractors. Details concerning the process, responsibilities,
and outcomes are captured in the “Method Description
Document” available on the Web site.

Software Technology Support Center
www.stsc.hill.af.mil
The Software Technology Support Center (STSC) is an Air
Force organization established to help other U.S. government
organizations identify, evaluate, and adopt technologies to
improve the quality of their software products, efficiency in
producing them, and their ability to accurately predict the
cost and schedule of their delivery.

